Normalisers of primitive permutation groups in quasipolynomial time
نویسندگان
چکیده
منابع مشابه
Topics in Computational Group Theory: Primitive permutation groups and matrix group normalisers
Part I of this thesis presents methods for finding the primitive permutation groups of degree d, where 2500 ≤ d < 4096, using the O’Nan–Scott Theorem and Aschbacher’s theorem. Tables of the groups G are given for each O’Nan– Scott class. For the non-affine groups, additional information is given: the degree d of G, the shape of a stabiliser in G of the primitive action, the shape of the normali...
متن کاملDistinguishing Primitive Permutation Groups
Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.
متن کاملSuborbits in Infinite Primitive Permutation Groups
For every infinite cardinal κ, we construct a primitive permutation group which has a finite suborbit paired with a suborbit of size κ. This answers a question of Peter M. Neumann.
متن کاملPrime order derangements in primitive permutation groups
Let G be a transitive permutation group on a finite set Ω of size at least 2. An element of G is a derangement if it has no fixed points on Ω. Let r be a prime divisor of |Ω|. We say that G is r-elusive if it does not contain a derangement of order r, and strongly r-elusive if it does not contain one of r-power order. In this note we determine the r-elusive and strongly r-elusive primitive acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2020
ISSN: 0024-6093,1469-2120
DOI: 10.1112/blms.12330